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Real Time Safety of Fixed-wing UAVs using Collision Cone Control Barrier
Functions
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Abstract— Fixed-wing UAVs have transformed the trans-
portation system with their high flight speed and long en-
durance, yet their safe operation in increasingly cluttered
environments depends heavily on effective collision avoidance
techniques. This paper presents a novel method for safely
navigating an aircraft along a desired route while avoiding
moving obstacles. We utilize a class of control barrier functions
(CBFs) based on collision cones to ensure the relative velocity
between the aircraft and the obstacle consistently avoids a cone
of vectors that might lead to a collision. By demonstrating that
the proposed constraint is a valid CBF for the aircraft, we can
leverage its real-time implementation via Quadratic Programs
(QPs), termed the CBF-QPs. Validation includes simulating
control law along trajectories, showing effectiveness in both
static and moving obstacle scenarios.

I. INTRODUCTION

Fixed-wing UAVs have revolutionized the transportation
system with their high flight speeds and long endurance.
However, their safe operation in increasingly cluttered envi-
ronments poses a significant challenge, as effective collision
avoidance techniques are crucial. Traditional control systems
for safety-critical applications should ideally come with
guarantees of safe operation under specified conditions. To
address these challenges, run-time assurance (RTA) systems
have been developed as supplementary modules for aircraft
flight controllers, intervening to prevent safety violations.

Despite these advancements, designing effective control
laws for RTA remains an unresolved issue. In response to this
problem, we present a novel method for safely navigating
an aircraft along a desired route while avoiding moving
obstacles. Our approach utilizes a class of control barrier
functions (CBFs) [1] based on collision cones to ensure
that the relative velocity between the aircraft and obstacles
consistently avoids vectors that might lead to a collision [2],
[3]. By demonstrating that the proposed constraint is a valid
CBF for the aircraft, we enable its real-time implementation
via Quadratic Programs (QPs), termed CBF-QPs. We validate
our approach by simulating control laws along trajectories,
showing its effectiveness in both static and moving obstacle
scenarios.

Control systems for safety-critical applications should ide-
ally come with guarantees of safe operation under specified
conditions. Recently, run-time assurance (RTA) systems have
been developed as supplementary modules for aircraft flight
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Fig. 1: Aircraft’s linear and angular velocities defined in
body-fixed frame. (X,Y,Z) represents earth-fixed frame.

controllers to prevent safety violations. Designing effective
control laws for RTA remains a challenging and unresolved
issue.

The rest of this paper is organized as follows. Preliminaries
explaining the fixed-wing UAV model, the concept of control
barrier functions (CBFs), collision cone CBFs, and controller
design are introduced in section II. The application of the
above CBFs on the fixed-wing aircraft to avoid obstacles
modelled as spheres is discussed in section III. The sim-
ulation setup and comparative results will be discussed in
section IV. Finally, we present our concluding remarks in
section V.

II. PRELIMINARIES

In this section, first, we will describe the kinematics of
fixed-wing UAV. Next, we will formally introduce Control
Barrier Functions (CBFs) and their importance in provid-
ing formal safety guarantees in safety-critical applications.
Finally, we will introduce Collision Cone Control Barrier
Function (C3BF) approach.

A. Control barrier functions (CBFs)

Here, we formally introduce Control Barrier Functions
(CBFs) and their applications in the context of safety. Given
the aircraft model (10), we have the nonlinear model in the
control affine form:

ẋ = f(x) + g(x)u (1)

where x ∈ D ⊆ Rn is the state of system, and u ∈ U ⊆
Rm the input for the system. Assume that the functions
f : Rn → Rn and g : Rn → Rn×m are continuously



differentiable. Specific formulation of f, g for the aircraft
were described in (10). Given a Lipschitz continuous control
law u = k(x), the resulting closed loop system ẋ = fcl(x) =
f(x)+g(x)k(x) yields a solution x(t), with initial condition
x(0) = x0. Consider a set C defined as the super-level set
of a continuously differentiable function h : D ⊆ Rn → R
yielding,

C = {x ∈ D ⊂ Rn : h(x) ≥ 0} (2)
∂C = {x ∈ D ⊂ Rn : h(x) = 0} (3)

Int (C) = {x ∈ D ⊂ Rn : h(x) > 0} (4)

It is assumed that Int (C) is non-empty and C has no isolated
points, i.e. Int (C) ̸= ϕ and Int (C) = C. The system is safe
w.r.t. the control law u = k(x) if ∀ x(0) ∈ C =⇒ x(t) ∈ C
∀t ≥ 0. We can mathematically verify if the controller k(x)
is safeguarding or not by using Control Barrier Functions
(CBFs), which is defined next.

Definition 1 (Control barrier function (CBF)): Given the
set C defined by (2)-(4), with ∂h

∂x (x) ̸= 0 ∀x ∈ ∂C, the
function h is called the control barrier function (CBF)
defined on the set D, if there exists an extended class K
function κ such that for all x ∈ D:

sup︸︷︷︸
u∈U

Lfh(x) + Lgh(x)u︸ ︷︷ ︸
ḣ(x,u)

+κ (h(x))

≥0 (5)

where Lfh(x) = ∂h
∂xf(x) and Lgh(x) = ∂h

∂xg(x) are the Lie
derivatives.

Given this definition of a CBF, we know from [1] and [4]
that any Lipschitz continuous control law k(x) satisfying the
inequality: ḣ + κ(h) ≥ 0 ensures safety of C if x(0) ∈ C,
and asymptotic convergence to C if x(0) is outside of C.

B. Safety Filter Design

Having described the CBF, we can now describe the
Quadratic Programming (QP) formulation of CBFs. CBFs
act as safety filters which take the desired input udes(x, t)
and modify this input in a minimal way:

u∗(x, t) = argmin
u∈U⊆Rm

∥u− udes(x, t)∥2

s.t. Lfh(x) + Lgh(x)u+ κ (h(x)) ≥ 0
(6)

This is called the Control Barrier Function based Quadratic
Program (CBF-QP). The explicit form of the CBF-QP con-
trol u∗ can be obtained by solving the above optimization
problem using KKT conditions:

u∗(x, t) = udes(x, t) + usafe(x, t) (7)

where usafe(x, t) is given by

usafe(x, t) =

{
0 for ψ(x, t) ≥ 0

− Lgh(x)
Tψ(x,t)

Lgh(x)Lgh(x)T
for ψ(x, t) < 0

(8)

where ψ(x, t) := ḣ (x, uref (x, t)) + κ (h(x)). The sign
change of ψ yields a switching type of a control law.

C. Collision Cone CBF (C3BF) candidate for fixed wing
UAVs

We now formally introduce the proposed CBF candidate
for fixed wing UAVs. Let us assume that the obstacle is
centered at (xo(t), yo(t), zo(t)) having maximum dimension
of robs. We assume that xo(t), yo(t), zo(t) are differentiable
and their derivatives are piece-wise constants. ruav represents
the maximum radius of the sphere that circumscribes the
UAV, ds is the minimum distance to be maintained between
the UAV and the obstacle. The proposed approach combines
the idea of potential unsafe directions given by collision
cone (Fig. 2) as an unsafe set to formulate a CBF as in
[5]. Consider the following CBF candidate:

h(x, t) =< prel, vrel > +∥prel∥∥vrel∥ cosα, (9)

where prel is the relative position vector between the body
center of the aircraft and the center of the obstacle, vrel is
the relative velocity, < ·, · > is the dot product of 2 vectors
and α is the half angle of the cone, the expression of cosα

is given by
√

∥prel∥2−r2
∥prel∥ (see Fig. 2). Precise mathematical

definitions for prel, vrel will be given in the next section. The
proposed constraint simply ensures that the angle between
prel, vrel is less than 180◦ − α.

In [2], [3], [5], [6], it was shown that the proposed
candidate (9) is valid CBF for wheeled mobile robots, i.e.,
the unicycle and bicycle, and for quadrotors. With this result,
CBF-QPs were constructed that yielded collision-avoiding
behaviors in these models. We aim to extend this to the class
of fixed wing UAVs.

III. COLLISION CONE CBFS ON FIXED WING UAV
Having described the Collision Cone CBF candidate, we

will see their application on fixed wing UAVs in this section.
We consider our CBF candidate in its naive form and one
extended with a backstepping-based approach.

A. Fixed Wing UAV model

In this work, we adapt the 3D Dubins kinematic model [7],
that describes the motion of fixed-wing aircraft. Kinematic
models are more generalised and are invariant with changes
in inertia or vechile dimensions, thus readily used for nav-
igation and path planning tasks. The state of an aircraft in
Dubins model is described by x = [xp, yp, zp, ϕ, θ, ψ, VT ].
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Fig. 2: 3D CBF candidate: The dimensions of the obstacle
are comparable to each other, it can be assumed as a sphere

xp, yp, and zp denote the coordinates of the aircraft’s
center of gravity in an earth-fixed frame. ϕ, θ and ψ
represents the (roll, pitch & yaw) orientation of the aircraft.
(see Fig. 1). P, Q, R denote the respective angular velocities
of the aircraft in the body frame, VT is the total longitudinal
speed of the aircraft and AT is the longitudinal acceleration
of the aircraft. g is the gravitational acceleration constant.

B. Naive C3BF candidate

We first obtain the relative position and velocity vectors
between the body centre of the fixed wing aircraft and the
obstacle:

prel :=

xoyo
zo

−

xpyp
zp

 (11)

xo, yo, zo represents the obstacle location as a function of
time. Also, since the obstacles are of constant velocity, we
have ẍo = ÿo = z̈o = 0. We obtain its relative velocity as

vrel := ṗrel (12)

Now, we calculate the v̇rel term which contains our inputs,
i.e, (AT, P,Q), as follows:

v̇rel := −

cψcθ 0 −VT(sϕsψ + sθcϕcψ)
sψcθ 0 VT(sϕcψ − sψsθcϕ)
−sθ 0 −VTcϕcθ

AT

P
Q


+additional terms. (13)

Please note that the additional terms in the above equation,
refer to those terms that do not contain the input terms
(AT, P,Q) and thus do not contribute to the calculation of
Lgh.

Having introduced the Collision Cone CBF candidate in
II-C, we state the following result about its validity:

Theorem 1: Given the fixed wing UAV model (10), the
proposed CBF candidate (9) with prel, vrel defined by (11),
(12) is a valid CBF defined for the set C.

The way in which the controlled system works is shown in
Fig. 3 and described in detail in (IV). The main shortcoming
of this CBF is that it is valid only for the set C. Intuitively,
this is due to the fact that usafe can only alter AT and Q, but
not P . This can be verified by seeing how Lgh is constructed

using v̇rel in (13):

Lgh =



< ξ(x, t),

cψcθsψcθ
−sθ

 >

< ξ(x, t),

00
0

 >

< ξ(x, t),

−VT(sϕsψ + sθcϕcψ)
VT(sϕcψ − sψsθcϕ)

−VTcϕcθ

 >



T

, (14)

where ξ(x, t) = prel + vrel
√

∥prel∥2 − r2/∥vrel∥
This shows that the coefficient of P in Lgh(x)u is 0,

rendering input P uncontrollable by the safety filter.

C. C3BF Candidate with Backstepping
The safety set can be extended from C to D by considering

a version of (9) extended by backstepping. Using the defined
kinematics (10), we can determine the desired roll rate
Rdes from the desired acceleration ades based on the given
trajectory. Since R is a determined quantity, we backstep
from R to find P , based on the method described in [8].
The new CBF candidate is as follows:

h(x, t) =< prel, vrel > +∥prel∥∥vrel∥ cosα− 1

2λ
(Rdes −R)2,

(15)

where λ > 0 is a scaling constant.
We have the following result for the above CBF candidate

extended through backstepping:
Theorem 2: Given the fixed wing UAV model (10), the

proposed CBF candidate (15) with prel, vrel defined by (11),
(12) is a valid CBF defined for the set D.

The proof of the above result is beyond the scope of this
paper and will be taken up in a future work. A descriptive
comparison of (9) and (15) is given in the following section.

IV. RESULTS AND DISCUSSIONS

In this section we describe the setup and parameters used
for the Python simulation. Next, we do a comparative anal-
ysis of naive and backstepping based C3BFs, understanding
how they affect the controlled system. Finally, we compare
teh results from both our proposed C3BF candidates to an
existing CBF

A. Simulation Setup
We have validated the C3BF-QP based controller on fixed

wing UAVs for Naive and Backstepped CBF cases. We
have used an exponentially stable velocity tracking controller
(Appendix B [7]). Note that the choice of reference controller
does not affect the validity of the CBFs proposed above, any
valid velocity tracking controller can be used.

For the class K function in the CBF inequality, we chose
κ(h) = γh, where γ = 1. The scaling parameter in (15) was
chosen to be λ = 10−4. The gravitational constant used in
(10) is g = 9.81m/s2. The collision radius was chosen to
be r = robs+ ruav+ds = 100m, where robs is the collision
radius of the obstacle, ruav is the collision radius of the
controlled aircraft and ds is a safety measure.



B. C3BF - Naive vs Backstepped

The way in which the controlled system works is layered
with a base trajectory tracking controller with a C3BF-QP
safety layer for collision avoidance. The base controller udes
is designed to make the aircraft follow a given trajectory.
When an obstacle, static or having constant velocity, inter-
sects the aircraft’s trajectory with impending collision, the
C3BF-QP safety filter starts to alter the udes in order to
obtain a net control policy which ensures that the aircraft
remains ‘safe’, i.e. avoids the collision.

In the case of the naive C3BF (9), usafe derived from (6)
alters the desired AT and Q, provided by udes such that the
new control policy udes + usafe avoids the obstacle on the
path. The aircraft only pitches up or down in order to avoid
the obstacle while slowing down or speeding up accordingly.

(a)

(b)

(c)

Fig. 3: Aircraft’s behaviour following C3BF: Obstacle in-
coming head-on to the aircraft (a), Comparision of aircraft’s
behaviour following C3BF and CBF in [7] for a static
obstacle (b) and for constant velocity obstacle (c). In all three
cases, the collision radius r = 100m.

In case of obstacles which cannot be flown over, e.g.
pillars, geofences, etc., usafe of (9) is unable to maneuver
the aircraft sideways, and can only make the aircraft stop in
order to ensure safety. Hence the C3BF described by (15)
can generate usafe from (8) which brings change in all of
AT, P and Q, making the new CBF valid for the entire set
D. This also ensures stability of set C with respect to set
D. However, for the case of an obstacle with a finite 3D
collision radius, following a constant velocity trajectory or
static in the path of the aircraft, (9) and (15) produce usafe
which behave identically, since the obstacle can always be
flown over.

C. C3BF vs existing CBF

Comparing the action of the CBF proposed in [7] to the
C3BFs proposed in (9) and (15), (Fig. 3 b, c) we see that the
C3BFs safety filter start acting on the system much earlier
allowing for a smoother path. Also the action of the CBF-
QP in [7] is more conservative, taking a path with a large
deviation from the trajectory, whereas the action of C3BF-
QPs from (9) and (15) chooses a path with minimal deviation
while ensuring safety. This also shows that C3BFs create
control policies which require a lower effort.

V. CONCLUSIONS

We have shown that Collision Cone CBF works for fixed
wing UAVs. However, the point to be noted is that this
work is under progress and we are yet to compare the
results of Naive C3BF with C3BF with Backstepping for
cases which set them apart in simulations. Moreover, we also
plan to extend this analysis to collision avoidance with long
obstacles like trees and towers, while providing theoretical
guarantees.
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