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Abstract—As autonomous systems become more ubiquitous in
daily life, ensuring high performance with guaranteed safety is
crucial. However, safety and performance could be competing
objectives, which makes their co-optimization difficult. Learning-
based methods, such as Constrained Reinforcement Learning
(CRL), achieve strong performance but lack formal safety
guarantees due to safety being enforced as soft constraints,
limiting their use in safety-critical settings. Conversely, formal
methods such as Hamilton-Jacobi (HJ) Reachability Analysis
and Control Barrier Functions (CBFs) provide rigorous safety
assurances but often neglect performance, resulting in overly
conservative controllers. To bridge this gap, we formulate the
co-optimization of safety and performance as a state-constrained
optimal control problem, where performance objectives are
encoded via a cost function and safety requirements are imposed as
state constraints. We demonstrate that the resultant value function
satisfies a Hamilton-Jacobi-Bellman (HJB) equation, which we
approximate efficiently using a novel physics-informed machine
learning framework. In addition, we introduce a conformal
prediction-based verification strategy to quantify the learning
errors, recovering a high-confidence safety value function, along
with a probabilistic error bound on performance degradation.
Through several case studies, we demonstrate the efficacy of the
proposed framework in enabling scalable learning of safe and
performant controllers for complex, high-dimensional autonomous
systems.

I. INTRODUCTION

Autonomous systems are becoming increasingly prevalent
across various domains, from self-driving vehicles and robotic
automation to aerospace and industrial applications. Designing
control algorithms for these systems involves balancing two
fundamental objectives: performance and safety. Ensuring high
performance is essential for achieving efficiency and task
objectives under practical constraints, such as fuel limitations
or time restrictions. For instance, a warehouse humanoid
robot navigating to a destination must optimize its route for
efficiency. At the same time, safety remains paramount to
prevent catastrophic accidents or system failures. These two
objectives, however, often conflict, making it challenging to
develop control strategies that achieve both effectively.

A variety of data-driven approaches have been explored to
integrate safety considerations into control synthesis. Con-
strained Reinforcement Learning (CRL) methods [L], [2]
employ constrained optimization techniques to co-optimize
safety and performance where performance is encoded as
a reward function and safety is formulated as a constraint.
These methods often incorporate safety constraints into the
objective function, leading to only a soft imposition of the safety
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constraints. Moreover, such formulations typically minimize
cumulative constraint violations rather than enforcing strict
safety at all times, which can result in unsafe behaviors.

Another class of methods involve safety filtering, which
ensures constraint satisfaction by modifying control outputs in
real-time. Methods such as Control Barrier Function (CBF)-
based quadratic programs (QP) [3] and Hamilton-Jacobi (HJ)
Reachability filters [4], [S] act as corrective layers on top
of a (potentially unsafe) nominal controller, making minimal
interventions to enforce safety constraints. However, because
these safety filters operate independently of the underlying
performance-driven controller, they often lead to myopic and
suboptimal decisions. Alternatively, online optimization-based
methods, such as Model Predictive Control (MPC) [6], [7] and
Model Predictive Path Integral (MPPI) [8]], [9], can naturally
integrate safety constraints while optimizing for a perfor-
mance objective. These methods approximate infinite-horizon
optimal control problems (OCPs) with a receding-horizon
framework, enabling dynamic re-planning. While effective,
solving constrained OCPs online remains computationally
expensive, limiting their applicability for high-frequency control
applications. The challenge is further exacerbated when dealing
with nonlinear dynamics and nonconvex (safety) constraints,
limiting the feasibility of these methods for ensuring safety
and optimality for real-world systems.

A more rigorous approach to addressing the trade-off
between performance and safety is to formulate the problem
as a state-constrained optimal control problem (SC-OCP),
where safety is explicitly encoded as a hard constraint, while
performance is expressed through a reward (or cost) function.
While theoretically sound, characterizing the solutions of SC-
OCPs is challenging unless certain controllability conditions
hold [10]. To address these challenges, [[L1] proposed an
epigraph-based formulation, which characterizes the value
function of an SC-OCP by computing its epigraph using
dynamic programming, resulting in a Hamilton-Jacobi-Bellman
Partial Differential Equation (HIB-PDE). The SC-OCP value
function as well as the optimized policy is then recovered
from this epigraph. However, dynamic programming suffers
from the curse of dimensionality, making it impractical for
high-dimensional systems with traditional numerical solvers.
Furthermore, the epigraph formulation itself increases the prob-
lem’s dimensionality, exacerbating computational complexity
further.

In this work, we propose a novel algorithmic approach
to co-optimize safety and performance for high-dimensional
autonomous systems. Specifically, we formulate the problem
as an SC-OCP and leverage the epigraph formulation in [[L1].
To efficiently solve this epigraph formulation, we leverage
physics-informed machine learning [[12], [13] to learn a solution
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Fig. 1. Overview of the proposed approach: The methodology is organized into four steps. The first step involves training the auxiliary value function, Vo,
using a physics-informed machine learning framework. The second step applies a conformal prediction approach for safety verification of the learned Vj. In
the third step, the final value function Vj and the optimal safe and performant policy mg are inferred. The fourth step quantifies the performance of Vjp

through a second conformal prediction procedure.

to the resultant HIB-PDE by minimizing PDE residuals.
This enables us to efficiently scale epigraph computation for
higher-dimensional autonomous systems, leading to safe and
performant policies. To summarize, our main contributions are
as follows:

o We propose a novel Physics-Informed Machine Learning
(PIML) framework to learn policies that co-optimize
safety and performance for high-dimensional autonomous
systems.

o We introduce a conformal prediction-based safety verifi-
cation strategy that provides high-confidence probabilistic
safety guarantees for the learned policy, reducing the
impact of learning errors on safety.

o We propose a performance quantification framework that
leverages conformal prediction to provide high-confidence
probabilistic error bounds on performance degradation.

o Across three case studies, we showcase the effectiveness
of our proposed method in jointly optimizing safety and
performance while scaling to complex, high-dimensional
systems.

II. PROBLEM SETUP

Consider a nonlinear dynamical system characterized by
the state + € X C R™ and control input v € U C R™,
governed by the dynamics #(t) = f(z(t),u(t)), where the
function f : R™ x R™ — R" is locally Lipschitz continuous.
In this work, we assume that the dynamics model f is known;
however, it can also be learned from data if unavailable.

We are given a failure set & C X that represents the set of
unsafe states for the system (e.g., obstacles for an autonomous

ground robot). The system’s performance is quantified by the
cost function C(¢, x,u), given by:

U(z(s)) ds + ¢(x(T)),

where [ : X — R>p and ¢ : X — Ry are Lipschitz
continuous and non-negative functions, representing the running
cost over the time horizon [t,T") and the terminal cost at time
T, respectively. u : [¢t,T) — U is the control signal applied to
the system. Using this premise, we define the main objective
of this paper:

T
C(t, (), u) = / 1)

=t

Objective 1. We aim to synthesize an optimal policy
7 : [t,T) x X — U that minimizes the cost function C
while ensuring that the system remains outside the failure
set F at all times.

A. State-Constrained Optimal Control Problem

To achieve the stated objective, the first step is to encode
the safety constraint via a function g : R™ — R such that,
F :={x € X | g(z) > 0}. Using these notations, the objective
can be formulated as the following State-Constrained Optimal
Control Problem (SC-OCP) to compute the value function V:

T
Vita(t) = min [ 1(a(s))ds + o(a()

st = f(x,u),
g(x(s)) <0 Vse[t,T]

(@)

This SC-OCP enhances the system’s performance by mini-
mizing the cost, while maintaining system safety through the
state constraint, g(z) < 0, ensuring that the system avoids the



failure set, F. Thus, the policy, 7*, derived from the solution
of this SC-OCP co-optimizes safety and performance.

B. Epigraph Reformulation

Directly solving the SC-OCP in (@) presents significant
challenges due to the presence of (hard) state constraints. To
address this issue, we reformulate the problem in its epigraph
form [16], which transforms the constrained optimization
into a more tractable two-stage optimization problem. This
reformulation allows us to efficiently obtain a solution to the
SC-OCP in (@). The resulting formulation is given by:

V(t,z(t)) = mi
(¢, 2(t)) = min 2 4
s.t. V(t,x,2) <0,

where z is a non-negative auxiliary optimization variable, and
V represents the auxiliary value function. Here, V' is defined
as [11]:

V(t,z(t), z) = minmax{C (¢, z(t),u) — z, max
u s€t,T]

g(x(s))}-
) )
Note that if V (¢, z, z) < 0, it implies that g(z(s)) < 0 for all
s € [t,T] . In other words, the system must be outside the
failure set at all times; therefore, the system is guaranteed to
be safe whenever V(,, z) < 0.

In this reformulated problem, state constraints are effectively
eliminated, enabling the use of dynamic programming to
characterize the value function, as we explain later in this
section. Intuitively, optimal z (z*) can be thought of as
the minimum permissible cost the policy can incur without
compromising on safety. From Equation [3] it can be inferred
that if z > z*, the safety constraint dominates in the max term,
resulting in a conservative policy. Conversely, if z < z*, the
performance objective takes precedence, leading to a potentially
aggressive policy that might compromise safety.

Furthermore, to facilitate solving the epigraph reformulation,
z can be treated as a state variable, with its dynamics given by
2(t) = —I(x(t)). This implies that as the trajectory progresses
over time, the minimum permissible cost, z, decreases by the
step cost I(x) at each time step. This allows us to define an
augmented system that evolves according to the following

dynamics:
b= = TG00

where & := [z, 2]7 represents the augmented state. With the
augmented state representation, it has been shown that the
auxiliary value function V (¢, z(t), z(t)) is characterized as the
unique continuous viscosity solution of the following Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE) [[11]:

(&)

min(—(?tf/ - m&n(V@V(t, &), f(&,u),V — g(m)) =0, (6)

Vt € [0,T) and & € X xR, where (-, -) denotes the dot product
of vectors. The boundary condition for the PDE is given by:
zeX xR (7

Note that by a slight abuse of notations, we have replaced the
arguments z, z for V' with the augmented state 2.

V(T,2) = max (¢(x) — z,9(x)),

III. METHODOLOGY

To solve the SC-OCP in Equation (2)), we aim to compute
the optimal value function V', which minimizes the cost while
ensuring system safety. In this section, we outline a structured
approach: first, we learn the auxiliary value function 1% using
a physics-informed machine learning framework. Then, we
apply a conformal prediction-based method to verify safety
and correct for potential learning errors in V. The final value
function V' is obtained from the safety-corrected 1% using the
epigraph formulation in (3). Lastly, we assess the performance
of V through a second conformal prediction procedure. Figure
gives an overview of the proposed approach.

The following subsections provide a detailed explanation of
each step, beginning with the methodology for learning V.

A. Training the Auxiliary Value Function (V)

The auxiliary value function, V, satisfies the HJB-PDE
in Equation (6), as discussed in Section Traditionally,
numerical methods are used to solve the HIB-PDE over a grid
representation of the state space [17]], [18]], where time and
spatial derivatives are approximated numerically. While grid-
based methods are accurate for low-dimensional problems, they
struggle with the curse of dimensionality — their computational
complexity increases exponentially with the number of states
— limiting their use in high-dimensional systems. To address
this, we adopt a physics-informed machine learning framework
inspired by [19], [20], which has proven effective for high-
dimensional reachability problems.

The solution of the HIB-PDE inherently evolves backward
in time, as the value function at time ¢ is determined by its
value at ¢ + At. To facilitate neural network training, we use a
curriculum learning strategy, progressively expanding the time
sampling interval from the terminal time [T, T'] to the full time
horizon [0, 7. This approach allows the neural network to first
accurately learn the value function from the terminal boundary
conditions, subsequently propagating the solution backward in
time by leveraging the structure of the HIB-PDE.

Specifically, the auxiliary value function is approximated by
a neural network, Vg, where 6 denotes the trainable parameters
of the network. Training samples, (¢, ¥k, 2 )~ ,, are randomly
drawn from the state space based on the curriculum training
scheme. The proposed learning framework utilizes a loss
function that enforces two primary objectives: (i) compliance
with the PDE in (6), using the PDE residual error given by:

Lpae (t, #4]0) = | min {_atvg (t, @) — H(tg, 33),

Vo (th, %) = g (@) } 1

where H (t,#) = minyey (VVy(t, &), f(2,u)) and (ii) sat-
isfaction of the boundary condition in (7)), using boundary
condition loss, given by:

Lpe (t, 21]0) = [[max (¢p(zx) — 2k, 9(xk)) —
Ve (tk,ik)‘ 1ty =T).

These terms are balanced by a trade-off parameter A, leading
to the overall loss function:

L (tk, fck|9) = Lpde (tg, :i‘k|9) + ALpe (tk, i’k|9)

(€))

(10)



Algorithm 1 Safety Verification using Conformal Prediction

Require: S, N, fs, €5, Vg(O,:ﬁ), Vﬁg (0,4), M (number of
d-levels to search for §),
Dy < Sample N; 1ID states from Ss—o
50 — min,@jeDo{Vg(O,i’j) : Vﬁ—e(o,ii'j) > 0}
eo < (M4) (using as—o)
A + Ordered list of M uniform samples from [dg, O]
for; =0,1,...,.M —1do
while ¢; < ¢5 do
Update s, from §;
¢; < (M4) (using as,)
end while
: end for
return 6 < J;
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—_ ==
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Minimizing the overall loss function provides a self-supervised
learning mechanism to approximate the auxiliary value function.

B. Safety Verification

The learned auxiliary value function, Vp, induces a policy, 7y,
that minimizes the Hamiltonian term H (¢, %) in the HIB-PDE.
The policy is given by:

o t, ) = argmin(VVp(t, &), f(3,u)). (11)

The rollout cost corresponding to this policy is defined as:

Vi, (t, &) = max{C(t, z(t),u) — z, max, g(z(s))}

u="my

(12)
Ideally, the rollout cost from a given state under 7y should
match the value of the auxiliary value function at that state.
However, due to learning inaccuracies, discrepancies can arise.
This becomes critical when a state, Z;, is deemed safe by the
auxiliary value function (Vs (¢, %) < 0) but is unsafe under the
induced policy (Vﬁ—s (t, ) > 0). To address this, we introduce a
uniform value function correction margin, §, which guarantees
that the sub-d level set of the auxiliary value function remains
safe under the induced policy. Mathematically, the optimal &
(6*) can be expressed as:

6 = mi/_r&{%((),:f:) : Viy (0,2) > 0}
T

(13)

Intuitively, 6* identifies the tightest level of the value function
that separates safe states under 7g from unsafe ones. Hence,
any initial state within the sub-0* level set is guaranteed to
be safe under the induced policy, 7;. However, calculating
0* exactly requires infinitely many state-space points. To
overcome this, we adopt a conformal-prediction-based approach
to approximate §* using a finite number of samples, provid-
ing a probabilistic safety guarantee. The following theorem
formalizes our approach:

Theorem III.1 (Safety Verification Using Conformal Predic-
tion). Let S5 be the set of states satisfying Vy(0,2) < 6, and
let (0,%;)i=1,...N, be Ny iid. samples from S5. Define as as
the safety error rate among these N, samples for a given §

Algorithm 2 Performance Quantification using Conformal
Prediction
Require: S*, N, B, Vp(0,2), V,(0, )

1: D <+ Sample N, IID states from{z : x € §*}

2: fori=0,1,...,N, — 1 do

3: P pi((), D)

4: end for

5: P + P sorted in decreasing order
6: a,ﬁ—ﬁ, w()(—P(), 60(—@
7. for i =0,1,...,N, — 1 do

8:  while ¢; <¢, do

9: ap%ﬁ, wi<_Pi7 61‘(—
10  end while

11: end for

12: return ¢ < ;

level. Select a safety violation parameter €; € (0,1) and a
confidence parameter S35 € (0,1) such that:

-1

Z (]\ZS>EZS(1 - es)N57i < 557

1=0

(14)

where | = | (Ns+ 1)as|. Then, with the probability of at least
1 — B, the following holds:

P (V(o,gz,;) < 0) >1 e, (15)

TESs
The proof is available in Appendix [A-A] The safety error
rate oy is defined as the fraction of samples satisfying Vo <6
and Vﬁ—e > 0 out of the total Ny samples.
Algorithm [1| presents the steps to calculate § using the
approach proposed in this theorem.

C. Obtaining Safe and Performant Value Function and Policy
Jfrom Vy

Using the d-level estimate from Algorithm (I, we can finally
obtain the safe and performant value function, Vy(t,z), by
solving the following epigraph optimization problem:

Ve(t,z) = min 2

s.t. Vg(t,x,z) )

(16)

Note that Vp(t,x) is trivially oo for the states where
Vg(t,a:,z) > ¢, since such states are unsafe and hence do
not satisfy the safety constraint.
In practice, we solve this optimization problem by using
a binary search approach on z. The resulting optimal state-
feedback control policy, 79 : X x [t,T) — U, satisfying
Objective (1), is given by:
mo(t, ) = argmuin<v‘79(t7j*)vf(j*au»v (17)
where 2* is the augmented state associated with the optimal
2* obtained by solving (T6), i.e., #* = [z, z*]T. Intuitively, we
can expect my to learn behaviors that best tradeoff the safety
and performance of the system.
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Fig. 2. This figure presents a comparative study between all the methods based on our evaluation metrics. The top plot illustrates the mean percentage
increase in cumulative cost relative to our method for each baseline, demonstrating that our approach consistently incurs lower costs, with the gap widening
as system complexity grows. The bottom plot depicts the safety rates, showing that our method maintains a 100% safety rate, while baselines that encourage
safety rather than enforcing it (like MPPI and C-SAC) achieve lower rates. MPPI-CBF also attains 100% safety but at the expense of performance. Overall,
our method uniquely balances both safety and performance, whereas the baselines compromise on at least one aspect.

D. Performance Quantification

In general, the learning inaccuracies in the auxiliary value
function Vg, may lead to errors in the value function Vj.
These errors, in turn, can lead to performance degradation
under policy 7. To quantify this degradation, we propose a
conformal prediction-based performance quantification method
that provides a probabilistic upper bound on the error between
the value function and the value obtained from the induced
policy. The following theorem formalizes our approach:

Theorem III.2 (Performance Quantification Using Confor-
mal Prediction). Suppose S* denotes the safe states satis-
fying Vy(0,2) < oo (or equivalently Vy(0,2*) < &) and
(0,4)i=1,...,.n, are Ny iid. samples from S*. For a user-
specified level o, let 1) be the M
Vo(O0) Vay Ol ”

Cmaz

th quantile

of the scores (p; :=

N, on the N,

state samples. Select a violation parameter ep (07 1) and a
confidence parameter (3, € (0,1) such that:
-1
Np\ i
2 ( f)ezu —e)" 5, ()

1=

where, | = |(N, + 1)ay,|. Then, the following holds, with
probability 1 — B,:

P ‘Va(O?l'l) _Vﬂe(ovxi”
TES* Cmaz

where Cy,qz Is a normalizing factor and denotes the maximum
possible cost that could be incurred for any r € S*.

The proof is available in Appendix [A-B] Note that Cy,qx
can be easily calculated by calculating the upper bound of the
cost function C(¢t, z(t),u)vVe € S*.

Intuitively, the performance of the resultant policy is the best
when the 1) value approaches 0, while the worst performance
occurs at ¢ = 1. Algorithm [2] presents the steps to calculate )
using the approach proposed in this theorem.

< ¢> >1—¢. (19

IV. EXPERIMENTS

The objective of this paper is to demonstrate the co-
optimization of performance and safety. To achieve this, we
evaluate the proposed method and compare them with baselines
using two metrics: (1) Camulative Cost: This metric represents
the total cost fOT I(z(s))ds+¢(x(T)), accumulated by a policy
over the safe trajectories. (2) Safety Rate: This metric is
defined as the percentage of trajectories that remain safe, i.e.,
never enter the failure region F at any point in time.

Baselines: We consider two categories of baselines: the
first set of methods aim to enhance the system performance
(i.e., minimize the cumulative cost) while encouraging safety,
encompassing methods such as Constrained Reinforcement
Learning (CRL) and Model Predictive Path Integral (MPPI)
algorithms. The second category prioritizes safety, potentially
at the cost of performance. This includes safety filtering
techniques such as Control Barrier Function (CBF)-based
quadratic programs (QP) [3]] that modify a nominal, potentially
unsafe controller to satisfy the safety constraint. Additionally,
we have presented the comparative study of offline and online
computation times between the baselines in Appendix

A. Efficient and Safe Boat Navigation

In our first experiment, we consider a 2D autonomous boat
navigation problem, where a boat with coordinates (xy, ys)
navigates a river with state-dependent drift to reach an island.
The boat must avoid two circular boulders (obstacles) of
different radii, which corresponds to the safety constraint in the
system (see Fig. ). The cost function penalizes the distance
to the goal. The system state, x, evolves according to the
dynamics:

T = [xbv yb]v

&= [ug + 2 — 0.5y7, us)] (20)

where [u1, us] are the bounded control inputs in the x;, and y,
directions, constrained by the control space U = {[uy, us] €

| |[ur,uz2]|| < 1}. The term 2 — 0.5y introduces a
state-dependent drift, complicating the control task as the
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Fig. 3. Trajectories from two distinct initial states are shown, with dark grey
circles representing obstacles and the green dot indicating the goal at [1.5,0]7.
Notably, our method is the only one that successfully approaches the goal
while adhering to safety constraints.

2

-3

actions must counteract the drift while ensuring safety, which
is challenging under bounded control inputs. The rest of the
details about the experiment setup can be found in the Appendix
B-Al

Safety Guarantees and Performance Quantification: We
use Ny = 300K and N, = 300K samples for thorough
verification, ensuring dense state space sampling. For this
experiment, we set e, = 0.001 and 3, = 1071, resulting in
a d-level of 0. This implies that, with 1 — 10719 confidence,
any state with Vj(t,z,2) < 0, is safe with at least 99.9%
probability. For performance quantification, we set ¢, = 0.01
and 8, = 10~10, leading to a t-level of 0.136. This ensures,
with 1—10710 confidence, that any state in S* has a normalized
error between the predicted value and the policy value of less
than 0.136 with 99% probability. Low ¢ and v values with high
confidence indicate that the learned policy closely approximates
the optimal policy and successfully co-optimizes safety and
performance.

Baselines: This being a 2-dimensional system, we compare
our method with the ground truth value function computed
by solving the HIB-PDE numerically using the Level Set
Toolbox (results in Appendix [B-AT). Additional baselines
include: (1) MPPI, a sample-based path-planning algorithm
with safety as soft constraints, (2) MPPI-NCBF, where safety
is enforced using a Neural CBF-based QP with MPPI as the
nominal controller [21]], [22]], and (3) C-SAC, a Lagrangian-
based CRL approach using Soft Actor-Critic [23l], incorporating
safety as soft constraints.

Comparative Analysis: Figure [3] shows that our method
effectively reaches the goal while avoiding obstacles, even when
starting close to them. In contrast, MPPI and C-SAC-based
policies fail to maintain safety, while MPPI-NCBF ensures
safety but performs poorly (leading to very slow trajectories).
Figure 2] highlights that our method outperforms all others.
C-SAC achieves reasonable performance with a 7.5% higher
mean cost compared to ours but has the lowest safety rate
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Fig. 4. Trajectories from two distinct initial states are depicted, with dark grey
circles representing obstacles and purple trajectories indicating the evader’s
path, with arrows showing its direction of motion. Our method successfully
tracks the evader while avoiding collisions, whereas all other methods either
fail to maintain safety, struggle to track the evader or both
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of 76%. MPPI, with a more competitive safety rate of 89%,
performs poorly with a 32.67% higher mean cost. MPPI-
NCBF achieves 100% safety but performs significantly worse,
with a 50.72% higher mean cost. Additionally, CBF-based
controllers sometimes violate control bounds, limiting their
applicability. This demonstrates that our method balances safety
and performance, unlike others that compromise on one aspect.
Moreover, the 100% safety rate of our method aligns closely
with at least 99.9% safety level that we expect using our
proposed verification strategy, providing empirical validation
of the safety assurances.

B. Pursuer Vehicle tracking a moving Evader

In our second experiment, we consider an acceleration-driven
pursuer vehicle, tracking a moving evader while avoiding
five circular obstacles (see Fig. ). This experiment involves
an 8-dimensional system, with the state x defined as z =
[T Yps Vs ©, Te, Ye, Vge, Uye] L, Where ,, yp, v, © represent the
coordinates, linear velocity, and orientation of the pursuer vehi-
cle, respectively, and ., Ye, Vze, Uye TEPresent the coordinates
and linear velocities of the evader vehicle. The pursuer vehicle
is controlled by linear acceleration (u;) and angular velocity
(u2). The control space is U = {[u1,us] € [-2,2]?}. The
complexity of this system stems from the dynamic nature of the
goal, along with the challenge of ensuring safety in a cluttered
environment, which in itself is a difficult safety problem. More
details about the experiment setup are in Appendix [B-B]

Safety Guarantees and Performance Quantification:
Similar to the previous experiment, we set N, = N, = 300k.
We choose ¢, = 0.01 and 3; = 10710, yielding a d-level of
—0.04 and a safety level of 99% on the auxiliary value function.
For performance, we set €, = 0.01 and 3, = 10719, leading
to a 1-level of 0.137. These values indicate the learned policy
maintains high safety with low-performance degradation in this
cluttered environment.
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Fig. 5. Snapshots of multi-agent navigation trajectories at different times using the proposed method. Agents are represented as circles with radius R, indicating
the minimum safe distance they must maintain from each other. Smaller dots mark their respective goals. The trajectories show that agents proactively maintain
long-horizon safety by adjusting their paths to avoid close encounters, rather than enforcing safety reactively, which could lead to suboptimal behaviors.
Finally, the agents reach their respective goals within the specified time horizon.

Baselines: Similar to the previous experiment, we use MPPI
and C-SAC with soft safety constraints as our baselines. For
safety filtering, we apply a collision cone CBF (C3BF) [24]]-
based QP due to its effectiveness in handling acceleration-driven
systems.

Comparative Analysis: Figure 4] shows that our method
effectively tracks the moving evader while avoiding obstacles,
even when starting close to them. In contrast, other methods
have limitations: MPPI and C-SAC attempt to follow the evader
but fail to maintain their pace, violating safety constraints, while
MPPI-C3BF sacrifices performance to maintain safety. Figure
[2] highlights our method’s superior performance in balancing
safety and performance. MPPI achieves the best performance
among the baselines but with an 18% higher mean cost and only
a 72% safety rate. MPPI-NCBF ensures 100% safety but has
a 42% higher mean cost. C-SAC underperforms both in safety
(66% safety rate) and performance (101% higher mean cost).
This suggests that C-SAC struggles with co-optimizing safety
and performance optimization in high-dimensional, complex
systems. Additionally, the safety guarantees hold true in the test
samples, confirming the reliability of our proposed safety veri-
fication framework in safety-critical, cluttered environments.

Receding Horizon Control: An interesting application of
the synthesized policy is its deployment in a receding horizon
fashion over a time horizon longer than that used for training
the value function, as illustrated in Fig. [6] The results indicate
that the learned policy successfully maintains safety while
effectively tracking the evader over a 6-second horizon, despite
being trained over a horizon of 1 second. This suggests that the
proposed approach can be extended to effectively co-optimize
safety and performance for long-horizon tasks by solving
the SC-OCP over a shorter time horizon. Consequently, this
framework offers a practical solution for real-world autonomous
systems that require long-horizon safety and performance
guarantees.

C. Multi-Agent Navigation

In our third experiment, we consider a multi-agent set-
ting where each of the 5 agents, represented by z; =
[Ta;,Yas» Tg,,Yg,), tries to reach its goal while avoiding col-
lisions with others. (z,,,¥q,) denote the position of the ith
agent, while (z4,,y,,) represent the goal locations for that
agent. The system is 20-dimensional, with each agent controlled

Our Method . Evader Trajectory

O

-1

-1 1
X

Fig. 6. Trajectories of the receding horizon policy for the pursuer tracking
an evader over a 6-second horizon, while the value function is trained over a
1-second horizon. The results demonstrate that the pursuer successfully tracks
the evader while ensuring safety, even when initialized near the obstacle. This
highlights the effectiveness of the proposed approach in jointly optimizing
safety and performance for long-horizon tasks.

by its « and y velocities. The control space for each agent
is Uy = {[va;, vy,] | [[vessvy]ll < 1} The complexity of
this system stems from the interactions and potential conflicts
between agents as they attempt to reach their goals while
avoiding collisions. The rest of the details about the experiment
setup can be found in Appendix

Safety Guarantees and Performance Quantification: We
set Ny = N, = 300k, €, = 0.001, and 3, = 10717, resulting
in a d-level of —0.09 with safety assurance of 99.9% for the
auxiliary value function. For performance quantification, we
set ¢, = 0.01 and B, = 10717, leading to a v-level of 0.068.
It is evident that the J and ¢ values remain very low with
high confidence, highlighting the effectiveness of our method
in co-optimizing safety and performance for high-dimensional,
multi-agent systems.

Baselines: Similar to previous experiments, we have used
MPPI, C-SAC, and MPPI-NCBF as our baselines for this
experiment too.

Comparative Analysis: Figure 5] shows that our method en-
sures long-horizon safety while enabling all agents to reach their
goals without collisions. In contrast, the baseline methods either
exhibit overly conservative behavior or fail to maintain safety,



leading to collisions, as detailed in Appendix [C-F Figure [2]
demonstrates the superior performance of our approach, with
MPPI, MPPI-NCBEF, and C-SAC showing mean percentage cost
increases of 148%, 192%, and 164%, respectively. Although
MPPI and MPPI-NCBF achieve competitive safety rates of 90%
and 100%, their significant performance degradation highlights
their inability to balance safety and performance in complex
systems. MPPI’s subpar performance stems from its reliance
on locally optimal solutions in a finite data regime, leading
to several deadlocks along the way and overall suboptimal
trajectories over a long horizon. Furthermore, C-SAC struggles
with both safety and performance, further demonstrating its
limitations in handling increasing system complexity and
dimensionality. These results confirm our method’s ability to co-
optimize safety and performance in high-dimensional systems,
demonstrating its scalability. Additionally, the safety guarantees
hold in the test samples, validating the scalability of our safety
verification framework for multi-agent systems.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced a physics-informed machine
learning framework for co-optimizing safety and performance
in autonomous systems. By formulating the problem as a state-
constrained optimal control problem (SC-OCP) and leveraging
an epigraph-based approach, we enabled scalable computation
of safety-aware policies. Our method integrates conformal
prediction-based safety verification to ensure high-confidence
safety guarantees while maintaining optimal performance.
Through multiple case studies, we demonstrated the effec-
tiveness and scalability of our approach in high-dimensional
systems. In future, we will explore methods for rapid adaptation
of the learned policies in light of new information about the
system dynamics, environments, or safety constraints. We will
also apply our method to other high-dimensional autonomous
systems and systems with unknown dynamics.
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APPENDIX A
PROOFS
A. Proof of Theorem (l1L.1])

Before we proceed with the proof of the Theorem (IILI), let us look at the following lemma which describes split conformal
prediction:

Lemma 1 (Split Conformal Prediction [25]). Consider a set of independent and identically distributed (i.i.d.) calibration
data, denoted as {(X;,Y;)}" ;, along with a new test point (Xies, Yiest) Sampled independently from the same distribution.
Define a score function s(z,y) € R, where higher scores indicate poorer alignment between x and y. Compute the
calibration scores s1 = s(X1,Y1),...,8, = s(X,,,Y,,). For a user-defined confidence level 1 — a, let ¢ represent the
[(n+1)(1 — a)]/n quantile of these scores. Construct the prediction set for the test input X as:

C(Xtest) = {y : S(Xteslay) < (j}
Assuming exchangeability, the prediction set C(Xi.y) guarantees the marginal coverage property:

P(Ytest € C(Xtest)) >1—a.

Proof. Following the Lemma [I] we employ a conformal scoring function for safety verification [26]), defined as:
s(X) = V4, (0,2),V3 € S;,

where Ss denotes the set of states satisfying %(0, %) < ¢ and the score function measures the alignment between the induced
safe policy and the auxiliary value function.
Next, we sample N, states from the safe set S5 and compute conformal scores for all sampled states. For a user-defined error
rate « € [0, 1], let ¢ denote the Mth quantile of the conformal scores. According to [27], the following property holds:
P (f/ﬁe 0,4;) < ) Beta(N, — [ +1,1), @1)
2€S;
where | = |(Ns + 1)a].
Define FE; as:

E,i= P (}r ) <A).
+€S; Ve(ox)_q

Here, E; is a Beta-distributed random variable. Using properties of cumulative distribution functions (CDF), we assert that
E, > 1 — e, with confidence 1 — 5 if the following condition is satisfied:

Ilfes(N_l"i_lvl) S/st (22)

where I,;(a,b) is the regularized incomplete Beta function and also serves as the CDF of the Beta distribution. It is defined as:

1 xr
I, = a=l(1 — )1 qt
ot = g [ e

where B(a,b) is the Beta function. From [28](8.17.5), it can be shown that I,(n — k,k + 1) = Zf (Dt (1—a)m
Then (22) can be rewritten as:

-1
N .
> ( f)ez(l — N < B, (23)
i
i=1
Thus, if Equation (23) holds, we can say with probability 1 — S that:

- P < G) > 1 —e..
B (Vﬂe(o,xl)_q)_l € (24)

Now, let k& denote the cardinality of the set A = {z € Ss | Va(0, &) < 6, Vi, (0,2) > 0}. Thus, the safety error rate is given
by as = 1\];—:-11 Let ¢ represent the Mth quantile of the conformal scores. Since k denotes the number of samples for
which the conformal score is positive, the Mth quantile of scores corresponds to the maximum negative score amongst

the sampled states. This implies that § < 0. From this and Equation (24), we can conclude with probability 1 — 3, that:

(0.4,)<0) >1—e,.
i&(m(o,xz)fo)fl €

From Equation (@), it can be inferred that ¥ (¢, %), V (¢, %) < Vi, (0, ). Hence, with probability 1 — S, the following holds:

P (V(O,afi) < 0) >1—e,.
TESs



B. Proof of Theorem (I11.2)

Proof. To quantify the performance loss, we employ a conformal scoring function defined as:

L |V9(05 xi) — Vﬂe (07 xl)'
max
where the score function measures the alignment between the induced optimal policy and the value function.
Next, we sample N, states from the state space S* and compute conformal scores for all sampled states. For a user-defined

error rate «, € [0, 1], let ¢ denote the (N”JJ\F,& quantile of the conformal scores. According to [27], the following property
holds: ’

Ve e S*

|L9(07$i) — LTre (O’xi)‘

< ~ — —|—
:ceIPjs ( Craz =v Beta(Np — L+ 1D,
where | = | (N, + 1)y, .

Define E,, as:

|%(0, xi) - Vﬂe (0,:)31‘)|
E,= P < .
p reS* ( Cmax - QZ}

Here, E, is a Beta-distributed random variable. Using properties of CDF, we assert that F, > 1 — ¢, with confidence 1 — ), if
the following condition is satisfied:
Lo, (Np =1+ 1,1) < By, (25)

where I.(a,b) is the regularized incomplete Beta function. From [28](8.17.5), it can be shown that I.(n — k,k + 1) =
Sk (Ma*(1 — z)"~". Hence, Equation (23) can be equivalently stated as:

-1

N\ ~

) ( 5’)6;(1 —&)" < B, (26)
i=1

Thus, if Equation (26) holds, we can conclude with probability 1 — 3, that:

<|V0(079€i) = Vi (0, 2)]

P
Cmaz

TeS*

<w>>1—6p.

APPENDIX B
ADDITIONAL DETAILS OF THE SYSTEMS IN THE EXPERIMENTS

In this section, we will provide more details about the systems we have used in the experiments section

A. 2D Boat

The states, = of the 2D Boat system are x = [z1, xQ]T, where, z1, 29 are the z and y coordinates of the boat respectively.
We define the step cost at each step, I(, x), as the distance from the goal, given by:

It @) = ||lz — (1.5,0)7 |
The cost function C(t, z(t)) is defined as:

Ot (1)) :/tTl(t,:c(t))dt + o(2(T)) 27)

where T is the time horizon (2s in our experiment), [(¢,z(t)) = ||z(¢) — (1.5,0)|| represents the running cost, and ¢(z(T)) =
||z(T) — (1.5,0)T]| is the terminal cost. Minimizing this cost drives the boat toward the island.
Consequently, the (augmented) dynamics of the 2D Boat system are:

#1 = up + 2 — 0.523
To = Ug
z=—=l(t,x)
where w1, u represents the velocity control in 2y and x5 directions respectively, with u? +u3 < 1 and 2 — 0.523 specifies the

current drift along the x;-axis.
The safety constraints are formulated as:

g(x) := max(0.4 — ||z — (—0.5,0.5)7,0.5 — ||z — (—1.0, —1.2)7))) (28)

where g(z) > 0 indicates that the boat is inside a boulder, thereby ensuring that the super-level set of g(x) defines the failure
region.
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1) Ground Truth Comparison: We compute the Ground Truth value function using the Level-Set Toolbox [17] and use it as
a benchmark in our comparative analysis. To facilitate demonstration, unsafe states are assigned a high value of 20 instead of
0o. The value function in this problem ranges from 0 to 14.76.

2 20.0
17.5
15.0
12:5
yb 10.0
7.5
5.0
2.5
23 Tp 2 3 T 2 "

Fig. 7. Heatmap of the value function for the ground truth (left) and our method (right). The yellow region represents the unsafe area. Our method successfully
captures most of the safe set, indicating that it is not overly conservative while completely recovering the unsafe regions.

As illustrated in Figure 7} the value function obtained using our method closely approximates the ground truth value function.
Notably, the unsafe region (highlighted in yellow) remains identical in both cases, confirming the safety of the learned value
function. Furthermore, the mean squared error (MSE) between the two value functions is 0.36, which is relatively low given
the broad range of possible values.

It is also worth mentioning that computing a high-fidelity ground truth value function on a 210 x 210 x 210 grid using the
Level Set Toolbox requires approximately 390 minutes [29]. In contrast, our proposed approach learns the value function in
122 minutes, achieving a substantial speedup. This demonstrates that even for systems with a relatively low-dimensional state
space, our method efficiently recovers an accurate value function significantly faster than grid-based solvers.

0.0007
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0.0003

0.0001

-0.3234 -0.2156 -0.1078 0.0000

o

Fig. 8. ¢ versus e for the learned auxiliary value function, V(t, z) after safety verification. It can be observed that ¢ varies with different safety violation
levels, €. Notably, § approaches zero for sufficiently small ¢, indicating that the learned value function exhibits very few safety violations.

2) Calculation of Safety Levels: Figure [§illustrate the § vs e plot obtained after the safety verification algorithm proposed in
Theorem [[II.1] We can observe that the § level approaches O as the e values approach the chosen safety level of 0.001. Hence,



we say that the sub-level set of the auxiliary value function, V(t, Z) is safe with a probability of 1 — 0.001 = 0.999.

B. Pursuer vehicle tracking an evader

The state, = of a ground vehicle (pursuer) tracking a moving evader is « = [}, Yp, ¥, O, Ze, Ye, Uge, vye]T, where, z¢, Ye, v, ©
are position, linear velocity and orientation of the pursuer respectively, Zc, Ye, Vze, Vye are the position and the linear velocities
of the evader respectively. We define the step cost at each step, {(¢, z), as the distance from the goal, given by:

1t @) = | (zp(t), yp ()" = (ze(t) ye ()"
and the terminal cost is ¢(z(T)) = ||(2p(T), yp(T))T — (2e(T), ye(T))T||. The cost function C(t,z(t)) is defined as:

C(t,z(t),u) —/tTl(t,a:(t))dt + o(x(T)) (29)

where T' is the time horizon (1s in this experiment). Minimizing this cost aims to drive the pursuer toward the evader.
Consequently, the (augmented) dynamics of the system is as follows:

Zp = vcos(O)

Yp = vsin(O)
V= U
O = uy
Le = VUge
Ye = Uye
VUge =0
Vye =0
Z2=—l(t,x)

where u; represents the linear acceleration control and us represents angular velocity control.
The safety constraints are defined as:

g(x) :==max(0.2 — ||z — (0.5,0.5)7],0.2 — ||z — (—0.5,0.5)7,0.2 — ||z — (—0.5, —0.5)T,
0.2 — ||l — (0.5,—0.5)7,0.2 — |lz — (0.0,0.0)7],))

which represents 5 obstacles of radius 0.2 units each.

C. Multi-Agent Navigation

A multi-agent setting with 5 agents. The state of each agent i is represented by z; = [Z4,, Ya,, Zg,, Yg;]» tries to reach its
goal while avoiding collisions with others. (z,,, yq,) denote the position of the ith agent, while (z,,,y,,) represent the goal
locations for that agent. We define the step cost at each step, I(¢,x(t)), as the mean distance of each agent from its respective
goal, given by:

et @ai (1), yar (D = (g, (), g, (D))" |

I(t,z(t)) == 3
The cost function C(¢, z(t), u) is defined as:
T
C(t,z(t),u) := / I(t,z(t))dt + ¢(z(T)) (30)

where T is the time horizon (2s in this experiment). Minimizing this cost aims to drive each agent towards its goal. Consequently,
the (augmented) dynamics of the system is as follows:

Za, = u1i, Vi € {1,2,3,4,5}
Ya;, = U2, Vi € {1,2,3,4,5}
&g, =0,Vi € {1,2,3,4,5}
Ug: = 0,Vi € {1,2,3,4,5}
Z2=—l(t,x)
where u1;, us; represents the linear velocity control of each agent 7. The safety constraints are defined as:

z(t)) == ma., R —|[(za,,ya)" — (2a.,ya)T
oa) = _max (R~ (@) = (g7 a1



APPENDIX C
IMPLEMENTATION DETAILS OF THE ALGORITHMS

This section provides an in-depth overview of our algorithm and baseline implementations, including hyperparameter
configurations and the cost/reward functions used in the baselines across all experiments.

A. Experimental Hardware

All experiments were conducted on a system equipped with an 11th Gen Intel Core i9-11900K @ 3.50GHz x 16 CPU,
128GB RAM, and an NVIDIA GeForce RTX 4090 GPU for training.

B. Hyperparameters for the Proposed Algorithm
We maintained training settings across all experiments, as detailed below:

Hyperparameter Value

Network Architecture Multi-Layer Perceptron (MLP)

Number of Hidden Layers 3

Activation Function Sine function

Hidden Layer Size 256 neurons per layer

Optimizer Adam optimizer

Learning Rate 2x 1075

Boat Navigation .

Number of Training Points 65000

Number of Pre Training Epochs 50K

No. of Training Epochs 200K

Pursuer Vehicle Tracking Evader .

Number of Training Points 65000

Number of Pre Training Epochs 60K

No. of Training Epochs 300K

Multi Agent Navigation .

Number of Training Points 65000

Number of Pre Training Epochs 60K

No. of Training Epochs 400K
TABLE I

HYPERPARAMETERS FOR THE PROPOSED ALGORITHM

C. MPPI based baselines
For all the experiments we consider the MPPI cost term as follows:

Cuppr = C(t, z(1), u) + Amax(g(z), 0) (32)

where, A is the trade-off parameter, C(t, z(t),u), g(x) are the cost functions and safety functions as defined in Appendix
Following is the list of hyperparameters we have used for MPPI experiments in all the cases:

Hyperparameter Value

Trade-off parameter (\) 100

Planning Horizon 20

Softmax Lambda 200

No. of Rollouts 8000
TABLE II

HYPERPARAMETERS FOR MPPI BASELINES

D. C-SAC hyperparameters

For all the experiments, we consider the reward term as follows:

Rosac = —C(t,x(t),u) — Iyz)>0 % (100) + L4 2(1))<0.1 X (100) (33)

where, C(t, z(t),u), g(x) are the cost functions and safety functions as defined in Appendix [B| Following is the list of
hyperparameters we have used for SAC experiments in all the cases:

E. Computation time Comparison

Figure 9] presents a comparative analysis of the offline and online computation times for our method against the baselines. It
can be observed that the proposed approach exhibits better scalability with increasing dimensionality compared to C-SAC, as
our method demonstrates a steady growth in training time, whereas C-SAC experiences a sharp increase in offline computation
time as the dimensionality rises. Additionally, the online computation time for both our method and C-SAC remains significantly
lower than that of online algorithms such as MPPI and MPPI-SF. This highlights the practicality of our method for real-time
applications, provided that the offline value function has been precomputed.



Parameter Value
Policy Architecture Multi-Layer Perceptron (MLP)
learning rate 3x 1074
buffer size 1,000, 000
learning starts 10,000
batch size 256
Target network update rate (7) 0.005
Discount factor (v) 0.99
Boat Navigation .
Number of Training Steps 1,000,000
Pursuer Vehicle Tracking Evader .
Number of Training Steps 2,500,000
Multi Agent Navigation .
Number of Training Steps 1,000,000

TABLE III
GENERAL HYPERPARAMETERS OF SAC IN OUR EXPERIMENTS

Our Method = MPPI = MPPI-CBF Constrained SAC
Offline computation time (in min)

3

200 400 600 0 200 400 600 0 200 400 600

Online Computation Time (in sec)

Boat Navigation Evader Chasing Multi Agent Navigation

Fig. 9. This figure presents a comparative analysis of all methods based on online and offline computation time evaluated on the same computing machine.
The top plot illustrates the offline computation time for our method and the baselines. Since our method and C-SAC involve training value functions, they
incur higher offline computation costs, whereas MPPI-based methods require no offline training. The bottom plot depicts the online computation time,
demonstrating that our method and C-SAC have minimal online computation requirements, whereas MPPI-based methods exhibit significantly higher online
computational costs.

FE. Comparison of Multi-Agent Navigation with baselines

Figures [I0] [T1] and [I2]illustrate the trajectories obtained by the baseline methods for the Multi-Agent Navigation problem. It
can be observed that the trajectories obtained by MPPI and MPPI-SF are highly conservative, implying that these methods
prioritize safety to mitigate potential conflicts among agents. In contrast, the policy derived from C-SAC fails to maintain safety,
resulting in agent collisions. This indicates that as system complexity increases, the baseline methods tend to prioritize either
safety or performance, leading to suboptimal behavior and safety violations. Conversely, the proposed approach effectively
co-optimizes safety and performance, even in complex high-dimensional settings, achieving superior performance while ensuring
safety.
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Fig. 10. Snapshots of multi-agent navigation trajectories at different time instances using MPPI. The trajectories indicate that the agents adopt a highly
conservative strategy to prevent collisions. Consequently, this leads to a reduction in performance, as the agents end up very far from their respective
goals.
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Fig. 11. Snapshots of multi-agent navigation trajectories at different time instances using MPPI-NCBF. The observed trajectories demonstrate suboptimal

behavior similar to that of the MPPI policy. Consequently, this results in high-performance costs, indicating its inability to effectively co-optimize safety

and performance.
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Fig. 12. Snapshots of multi-agent navigation trajectories at different time instances using C-SAC. The trajectories indicate that agents demonstrate less

conservative behavior compared to MPPI and MPPI-NCBF, but they lead to collisions. These safety violations are critical and cannot be disregarded,

further highlighting the limitations of the baseline methods in simultaneously optimizing safety and performance.
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